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Abstract
The EM algorithm for the Bayesian grey scale image restoration is investigated
in the framework of the mean field theory. Our model system is identical to the
infinite range random field Q-Ising model. The maximum marginal likelihood
method is applied to the determination of hyper-parameters. We calculate
both the data-averaged mean square error between the original image and
its maximizer of posterior marginal estimate, and the data-averaged marginal
likelihood function exactly. After evaluating the hyper-parameter dependence
of the data-averaged marginal likelihood function, we derive the EM algorithm
which updates the hyper-parameters to obtain the maximum likelihood estimate
analytically. The time evolutions of the hyper-parameters and so-called Q
function are obtained. The relation between the speed of convergence of
the hyper-parameters and the shape of the Q function is explained from the
viewpoint of dynamics.

PACS numbers: 02.50−r, 05.20−y, 05.50+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, a statistical-mechanical approach to the problems of information processing was
investigated from the viewpoint of Bayesian inference [1]. As a typical example of the
Bayesian inferences from an incomplete data set, image restoration has been investigated
by engineers, applied mathematicians and statistical physicists [2, 3]. Among these studies,
analysis of the infinite range Markov random field model has played an important role to grasp
some essential features of the model systems. By using this artificial model, Nishimori and
Wong [4] obtained hyper-parameter dependence of the overlap between original and restored
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images explicitly in the context of the maximizer of posterior marginal (MPM) estimation for
black and white images. For grey scale image restoration, which is more important from a
practical point of view, Carlucci and Inoue [6] and Inoue and Carlucci [7] tried to formulate the
problem by the chiral Potts spin glass model and the Q-Ising spin glass model [8], respectively.

In the Bayesian inference context, we should detect the optimal hyper-parameters from
observable data (the degraded image in the context of image restoration) and this is one
of the essential problems concerning image restoration. For this problem, the maximum
marginal likelihood method is applied to decide the maximum likelihood estimate of the
hyper-parameters. For black and white image restoration, the present authors calculated
the data-averaged marginal likelihood function explicitly by means of the mean-field Ising
model and investigated the hyper-parameter dependence of the likelihood function explicitly
[9]. They also constructed the gradient descent and the EM algorithm [10] to maximize the
marginal likelihood function and compared these two methods.

In this paper, we extend our work [9] to a more realistic case, namely, the problem of grey
scale image restoration by using the Q-Ising model [6]. We focus on the dynamics of the EM
algorithm and investigate the time evolution of the hyper-parameters, Q function analytically.
Slow convergence by the EM algorithm along a specific hyper-parameter direction is explained
from the viewpoint of time evolution of the Q function.

This paper is organized as follows. In section 2, we define the model system and explain
the Bayesian grey scale image restoration using the Q-Ising model. In section 3, the marginal
likelihood function is introduced and we explain the criterion of the maximum marginal
likelihood function to infer the hyper-parameters. In section 4, we calculate the averaged
marginal likelihood function to investigate a typical performance of the maximum marginal
likelihood method. The hyper-parameter dependence of the averaged marginal likelihood
function is derived for the cases Q = 3 and 4. In section 5, the EM algorithm is applied to
the problem. For the mean-field model, the update rules of the hyper-parameters are obtained
analytically. Flows of the hyper-parameters, the time dependences of the hyper-parameters,
the Q function and the averaged marginal likelihood are given explicitly. The final section is
devoted to a summary.

2. Definitions of the mean-field Q-Ising system

In this section, we explain the definitions of our image restoration system. The original images
{ξ} ≡ (ξ1, ξ2, . . . , ξN) are given as snapshots from the Gibbs distribution of the ferromagnetic
Q-Ising model [7]:

Pβs
({ξ}) = exp

[−(βs/2N)
∑

ij (ξi − ξj )
2
]

Z0(βs)
(1)

where each pixel ξi takes Q values, namely, ξi = 0, 1, 2, . . . ,Q − 1. The partition function
Z0(βs) is a normalization constant of the distribution (1):

Z0(βs) ≡ tr{ξ} exp


−(βs/2N)

∑
ij

(ξi − ξj )
2


 (2)

where tr{ξ}(· · ·) means
∑Q−1

ξ1=0

∑Q−1
ξ2=0 · · · ∑Q−1

ξN=0(· · ·). We should keep in mind that the energy
appearing in the shoulder of the exponential of equation (1) is divided by N because we
consider the infinite range model in which every pixel is connected.
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For this original image, a degrading process, namely, the process from an original image
{ξ} to a degraded image {τ } ≡ (τ1, τ2, . . . , τN) is described by the following conditional
probability (what we call the Gaussian channel):

Pa0,aτ
({τ }|{ξ}) = exp

[−(
1
/

2a2
τ

)∑
i (τi − a0ξi)

2
]

√
2πaτ

. (3)

Thus, the original image {ξ} is degraded by the Gaussian channel with mean {a0ξ} ≡
(a0ξ1, a0ξ2, . . . , a0ξN) and variance a2

τ .
In order to restore the original image {ξ} from the observable degraded image {τ }, we

construct the posterior distribution by means of the Bayes rule:

Pβ,h({σ }|{τ }) = Ph({τ }|{σ })Pβ({σ })
tr{σ }Ph({σ }|{τ })Pβ({σ })

= exp
[−h

∑
i (τi − σi)

2 − (β/2N)
∑

ij (σi − σj )
2
]

tr{σ } exp
[−h

∑
i (τi − σi)2 − (β/2N)

∑
ij (σi − σj )2

] (4)

where {σ } ≡ (σ1, σ2, . . . , σN) means estimates of the original images {ξ}. Ph({τ }|{σ }) and
Pβ({σ }) are regarded as a model of the channel (3) and a model of the distribution (1) (so-
called prior distribution), respectively. The hyper-parameters h and β specify these model
distributions and we should infer the values from incomplete data sets, namely, the degraded
images {τ }. We should bear in mind that it is possible for us to send more information about
the original image by using the parity check ξiξj (∀i� =j ) besides the sequence of the original
image {ξ}. Then, the system is described by the Q-Ising spin glass model [7, 8]. However, in
this paper, we restrict ourselves to the case without any extra information, and the system is
identical to the random field Q-Ising model.

For this posterior distribution (4), the MPM estimate of the ith pixel ξ̂i is given by

ξ̂i = �(〈σi〉) =
Q−1∑
k=0

[
�

(
〈σi〉 − 2k − 1

2

)
− �

(
〈σi〉 − 2k + 1

2

)]
(5)

〈σi〉 = tr{σ }σi exp
[−h

∑
i (τi − σi)

2 − (β/2N)
∑

ij (σi − σj )
2
]

tr{σ } exp
[−h

∑
i (τi − σi)2 − (β/2N)

∑
ij (σi − σj )2

] (6)

where � is a step function defined by

�(x) =
{

1 (x � 0)

0 (x < 0).
(7)

The reader should keep in mind that the estimate is regarded as ξ̂i = 0 if 〈σi〉 is smaller than
−1/2 and ξ̂i = Q if 〈σi〉 is greater than Q/2.

The quality of the restoration is measured by the following mean square error:

D = 1

2N

∑
i

(ξi − ξ̂i )
2. (8)

For this image restoration system represented by the Q-Ising model, Inoue and Carlucci [7]
investigated the averaged performance of the MPM estimation by using the replica method and
found that the mean square error takes its minimum at the true values of the hyper-parameters.
However, in general, true values or optimal values of the hyper-parameter cannot be obtained
before we calculate the estimate {ξ̂} ≡ (ξ̂1, ξ̂2, . . . , ξ̂N ). For this reason, estimation of the
hyper-parameters is needed in order to achieve the best possible Bayesian image restoration.
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In the next section, we explain how we estimate the hyper-parameters in the context of the
maximum marginal likelihood criterion and investigate its averaged case performance with
the assistance of a statistical-mechanical technique.

3. Marginal likelihood function

As we explained in the previous section, hyper-parameter estimation is essential in the context
of a Bayesian image restoration. When one attempts to infer the hyper-parameters, some
appropriate criteria are needed. For such a criterion, one may use the minimum mean square
error criterion. However, unfortunately, we cannot use it in practice. This is because, as we
saw in equation (8), the mean square error contains the original image and we need it when
we evaluate the minimum of the mean square error.

In statistics, the so-called marginal likelihood function is used as a cost function to attempt
to maximize for decision of the hyper-parameters. In this section, we evaluate the maximum
marginal likelihood criterion for the hyper-parameter estimation in our model system.

The marginal likelihood we use here is defined as follows:

−K(β, h : {ξ, τ }) ≡ log tr{σ }Ph({τ }|{σ })Pβ({σ })

= log tr{σ }
exp

[−h
∑

i (σi − τi)
2 − (β/2N)

∑
ij (σi − σj )

2
]

Z�(β)ZL(h)
(9)

where the following two partition functions are defined:

ZL(h) ≡ tr{τ } exp

[
−h

∑
i

(σi − τi)
2

]
=

(π

h

) N
2

(10)

Z�(β) = tr{σ } exp


−(β/2N)

∑
ij

(σi − σj )
2


 = exp

[
N

(−βm2
1 + log trσ e2βm1σ−βσ 2)]

(11)

where trσF (σ ) means
∑Q−1

σ=0 F(σ) for arbitrary function F. Magnetization m1 obeys the
saddle point equation

m1 = trσ σ exp(2βm1σ − βσ 2)

trσ exp(2βm1σ − βσ 2)
. (12)

Thus, the marginal likelihood function leads to

−K(β, h : {ξ, τ }) = log tr{σ } exp


−h

∑
i

(σi − τi)
2 − (β/2N)

∑
ij

(σi − σj )
2




+ Nβm2
1 − N log trσ e2βm1σ−βσ 2

+
N

2
log(h/π). (13)

We should keep in mind that the marginal likelihood function depends on {ξ} through {τ } by
equation (3). Obviously, the above marginal likelihood function −K(β, h : {ξ, τ }) depends
on the data set {ξ, τ } (quenched disorder in the context of spin systems). We should average
this marginal likelihood function over the distribution of {ξ, τ } to investigate the averaged
case performance of the maximum marginal likelihood method. In the next section, we carry
out this average explicitly.



Mean field theory of EM algorithm 11001

4. Averaged case performance

In order to investigate the averaged case performance of the maximum marginal likelihood
method, we should average the marginal likelihood function −K(β, h : {ξ, τ }) with respect
to {ξ} and {τ }. Then, we define the averaged marginal likelihood function as

−K(β, h) ≡ [−K(β, h : {ξ, τ })]{ξ,τ }

= −tr{ξ}
∫ ∞

−∞
{dτ }Pβs

({ξ})Pa0,aτ
({τ }|{ξ})K(β, h : {ξ, τ }) (14)

where we defined {dτ } ≡ dτ1 dτ2 · · · dτN .
To carry out the average, we first rewrite the product of the distribution of the source

image and the noise channel as follows:

Pβs,a0,aτ
({ξ}, {τ }) = Pβs

({ξ})Pa0,aτ
({τ }|{ξ})

=
∏

i

(
e2βsm0ξi−βsξ

2
i

trξi
e2βsm0ξi−βsξ

2
i

)
exp

[− 1
2a2

τ
(τi − a0ξi)

2
]

√
2πaτ

≡
∏

i

Pβs ,a0,aτ
(ξi, τi) (15)

where m0 should obey the following saddle point equation in the limit of N → ∞:

m0 = trξ ξ exp(2m0βsξ − βsξ
2)

trξ exp(2m0βsξ − βsξ 2)
. (16)

Then, in the limit of N → ∞, the first term of the marginal likelihood function (13) becomes
the self-average quantity and leads to

log tr{σ } exp


−h

∑
i

(σi − τi)
2 − (β/2N)

∑
ij

(σi − σj )
2




= −Nβm2 + N · 1

N

∑
i

log trσi
e−h(σi−τi )

2+2βmσi−βσ 2
i

= −Nβm2 + N trξ

∫ ∞

−∞
dτPβs,a0,aτ

(ξ, τ ) log trσ e−h(σ−τ)2+2βmσ−βσ 2

= −Nβm2 + N
trξ e2βsm0ξ−βsξ

2

Z0(βs)

∫ ∞

−∞
Dx log trσ e−h(σ−aτ x−a0ξ)2+2βmσ−βσ 2

≡ [log Z(β, h)]{ξ,τ } (17)

where Dx means the Gaussian integral measure defined by Dx ≡ dx e−x2/2
/√

2π and
magnetization m obeys the following saddle point equation:

m = trξ e2βsm0ξ−βsξ
2

Z0(βs)

∫ ∞

−∞
Dx

[
trσ σ e−(h+β)σ 2+2(haτ x+a0hξ+βm)σ

trσ e−(h+β)σ 2+2(haτ x+a0hξ+βm)σ

]
. (18)

Finally, we obtain the average marginal likelihood per pixel (14) as follows:

L(β,h) ≡ −K(β, h)

N
= −βm2 +

trξ e2βsm0ξ−βsξ
2

Z0(βs)

∫ ∞

−∞
Dx log trσ e−h(σ−aτ x−a0ξ)2+2βmσ−βσ 2

+ βm2
1 − log trσ e2βm1σ−βσ 2

+
1

2
log(h/π). (19)
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0 0.4 0.8 1.2 1.6

m0

Ts

Figure 1. The source magnetization m0 as a function of Ts = β−1
s . At the ground state, three

states 0, 1, 2 degenerate. For Ts > 0, the middle state m0 = 1 becomes a globally stable state.

In the next two subsections, we investigate the hyper-parameter dependence of the averaged
marginal likelihood function we obtained here explicitly for the cases Q = 3 and 4.

4.1. Analysis of the Q = 3 case

In this subsection, we consider the case Q = 3, namely, each pixel takes ξ, σ = 0, 1, 2. In
order to investigate the hyper-parameter dependence of the above averaged marginal likelihood
function, we first consider the magnetization of the original image. For the Q = 3 case, the
saddle point equation with respect to magnetization m0 of the original image leads to

m0 = e2m0βs−βs + 2 e4m0βs−4βs

1 + e2m0βs−βs + e4m0βs−4βs
. (20)

We plot the magnetization m0 as a function of temperature Ts = β−1
s in figure 1. From this

figure, we find that at Ts = 0, the three states, namely, m0 = 0, 1, 2, degenerate and the values
of the corresponding free energies are all the same. However, when Ts > 0, the middle state
m0 = 1 has the lowest free energy. As Ts increases, the system goes to the paramagnetic
phase. The magnetization m0 in the paramagnetic state is m0(para) = (0 + 1 + 2)/3 = 1. For
given original images whose magnetization is m0 at temperature Ts , we evaluate the mean
square error (8).

4.1.1. Results: mean square error. In figure 2, we plot the mean square error D as a function
of T = β−1. We set aτ = a0 = 1 and set h to its optimal value hopt = 1/2 so as to satisfy the
condition

− 1

2a2
τ

∑
i

(τi − a0ξi)
2 = −hopt

∑
i

(τi − σi)
2 (21)

for arbitrary configurations of {ξ} and {σ }. From these figures, we find that the mean square
error takes its minimum at the true hyper-parameter value, namely, T = Ts = 0.75 in the
context of the MPM estimation [7].
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D

T

Figure 2. Mean square error D as a function of temperature T. We set the source temperature to
Ts = 0.75 and choose noise level aτ = a0 = 1. We also set field h to its optimal value h = 1/2.
We find that the mean square error takes its minimum at T = Ts .
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h=0.5
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-1.85

-1.75

-1.65
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T=0.35

T=1.25

Figure 3. Averaged marginal likelihood L as a function of T (left) and h (right). We set
Ts = 0.75, aτ = a0 = 1. The values of magnetization m1,m are used as solutions of equations (12)
and (18). These figures show that the averaged marginal likelihood function takes its maximum at
(T , h) = (Ts , hopt) = (0.75, 0.5).

4.1.2. Results: averaged marginal likelihood function. In practice, we need to estimate these
hyper-parameter values from a given degraded image {τ }. Therefore, for this model system, we
next consider the hyper-parameter estimation in the context of maximization of the marginal
likelihood function (for the Ising case, see [9]). In figure 3, we plot the averaged marginal
likelihood L as a function of T and h. From these two figures, we find that the averaged
marginal likelihood function is maximized at the true hyper-parameter values, namely,
T = Ts = 0.75 and h = hopt = 1/2.

4.2. Analysis of the Q = 4 case

We next show the result for the case Q = 4. The source magnetization m0 as a function of
temperature Ts

m0 = e2m0βs−βs + 2 e4m0βs−4βs + 3 e6m0βs−9βs

1 + e2m0βs−βs + e4m0βs−4βs + e6m0βs−9βs
(22)
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Figure 4. The source magnetization for the case Q = 4. At Ts = 0, four states m0 = 0, 1, 2 and
3 degenerate. For finite temperature Ts > 0, the middle two states m0 = 1, 2 become globally
stable states. As temperature increases, the system goes to paramagnetic phase specified by the
magnetization m0(para) = (0 + 1 + 2 + 3)/4 = 1.5.

0.2

0.24

0.28

0.32

0 0.2 0.6 1 1.4 1.8

D

T

Figure 5. The mean square error D (right) as a function of T for the case Q = 4. The mean square
error takes its minimum at T = Ts = 1.0. We set aτ = a0 = 1 and h = hopt = 1/2.

is shown in figure 4. In this figure, we find that at the ground state, four states m0 = 0, 1, 2 and
3 degenerate, however, Ts > 0, the middle two states m0 = 1 and m0 = 2 become globally
stable states. As Ts increases, the system goes to paramagnetic phase whose magnetization is
m0(para) = (0 + 1 + 2 + 3)/4 = 1.5.

To use original images which have the magnetization m0, we set the temperature Ts = 1.0
and select the images at this temperature.

4.2.1. Results: mean square error. We evaluate the mean square error D. In figure 5, we plot
the temperature T dependence of the magnetization m and corresponding mean square error.
From the figure, we find that the mean square error takes its minimum at T = Ts .
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Figure 6. The marginal likelihood L as a function of T (left) and h (right) for the case Q = 4.
In the left-hand figure, we set the value of h to its optimal value 1/2 for aτ = a0 = 1. In the
right-hand figure, we set Td = Ts = 1.0.

4.2.2. Results: marginal likelihood function. We next consider the hyper-parameter
dependence of the averaged marginal likelihood function. In figure 6, we see that the marginal
likelihood takes its maximum at the true values of the hyper-parameters.

From the results obtained in this section, we conclude that the criterion of maximizing
the marginal likelihood function works well to obtain the optimal hyper-parameters.
Therefore, our problem is now how we maximize the marginal likelihood function for
a given degraded image. The simplest strategy to attempt it is to construct gradient
descent of the marginal likelihood function. For this strategy, we usually obtain a kind
of Boltzmann machine learning equations and their properties are investigated by Inoue and
Tanaka [9] in the context of the black and white image restoration. Besides the gradient
descent, the EM algorithm (expectation maximum algorithm) [10] is well known in the
field of statistics. In the next section, we investigate the averaged performance of the EM
algorithm for determination of the optimal hyper-parameters in Bayesian grey scale image
restoration.

5. EM algorithm

In the previous section, we found that the data-averaged marginal likelihood function takes
its maximum at the true values of the hyper-parameters. Therefore, the next problem to
be tackled by us is how one maximizes the likelihood function with respect to the hyper-
parameters. Usually, the direct maximization via, for example, the gradient descent method
or some other optimization techniques requires enormous computational costs.

To make the problem much more tractable, the EM algorithm (expectation maximum
algorithm) [10] is widely used. For black and white image restoration, Inoue and Tanaka
[9] investigated the performance of the EM algorithm and gradient descent to maximize the
marginal likelihood function by using the infinite range random field Ising model. They
compared these two methods and found that the EM algorithm shows faster convergence
to the solution than the gradient descent does. Here, we investigate properties of the EM
algorithm for grey scale image restoration by using the Q-Ising model.

The EM algorithm maximizes the following Q function, namely, the expectation of the
log-likelihood function log Ph({τ }|{σ })Pβ({σ }) over the time-dependent posterior distribution
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Pβ(t),h(t) ({σ }|{τ }) at each iteration step t

Q(β, h|β(t), h(t) : {ξ, τ }) = tr{σ }Pβ(t),h(t) ({σ }|{τ }) log Ph({τ }|{σ })Pβ({σ })

= −h

[
tr{σ }

∑
i (σi − τi)

2 e−h(t)
∑

i (σi−τi )
2−(β(t)/2N)

∑
ij (σi−σj )

2

tr{σ } e−h(t)
∑

i (σi−τi )2−(β(t)/2N)
∑

ij (σi−σj )2

]

− β

2N

[
tr{σ }

∑
ij (σi − σj )

2 e−h(t)
∑

i (σi−τi )
2−(β(t)/2N)

∑
ij (σi−σj )

2

tr{σ } e−h(t)
∑

i (σi−τi )2−(β(t)/2N)
∑

ij (σi−σj )2

]

− log Z�(β) − log ZL(h)

= h
∂

∂h(t)
log Z(β(t), h(t)) +

β

2N

∂

∂(β(t)/2N)
log Z(β(t), h(t))

+ Nβm2
1 − N log trσ e2βm1σ−βσ 2

+
N

2
log(π/h) (23)

where Z(β(t), h(t)) is a partition function given by

Z(β(t), h(t)) = tr{σ } e−h(t)
∑

i (σi−τi )
2−(β(t)/2N)

∑
ij (σi−σj )

2
. (24)

The above Q function is regarded as energy in contrast to the marginal likelihood function as
free energy. The EM algorithm maximizes the marginal likelihood function indirectly and it
guarantees local maximum solutions of the marginal likelihood function. It is important for
us to bear in mind that the parameters to be maximized, namely, β and h, do not appear in the
posterior distribution. Thus, the expectations of the quantities

∑
i (τi − σi)

2 or
∑

ij (σi − σj )
2

over the posterior distribution become linear with respect to β and h, and as a result, the
maximization conditions lead to simple non-linear maps. This is one of the advantages of the
EM algorithm and this fact makes the optimization problem more tractable.

As our interest here is the averaged case performance of the EM algorithm instead of the
performance for specific data sets {ξ, τ }, we should evaluate the averaged Q function, that is
to say,

Q(β, h|β(t), h(t)) = [Q(β, h|β(t), h(t) : {ξ, τ })]{ξ,τ }

= h
∂

∂h(t)
[log Z(β(t), h(t))]{ξ,τ } + β

∂

∂β(t)
[log Z(β(t), h(t))]{ξ,τ }

+ Nβm2
1 − N log trσ e2βm1σ−βσ 2

+
N

2
log(π/h). (25)

After substituting the average [log Z(β(t), h(t))]{ξ,τ } (see (17)) into the above expression, we
obtain the data-averaged Q function per pixel as follows:

q(β, h|β(t), h(t)) ≡ Q(β, h|β(t), h(t))

N
= −h

trξ e2βsm0ξ−βdξ 2

Z0(βs)

×
∫ ∞

−∞
Dx

[
trσ (σ − aτx − a0ξ)2 e−h(t)(σ−aτ x−a0ξ)2+2β(t)mσ−β(t)σ 2

trσ e−h(t)(σ−aτ x−a0ξ)2+2β(t)mσ−β(t)σ 2

]

−βm2 + β
trξ e2βsm0ξ−βsξ

2

Z0(βs)

×
∫ ∞

−∞
Dx

[
trσ (2mσ − σ 2) e−h(t)(σ−aτ x−a0ξ)2+2β(t)mσ−β(t)σ 2

trσ e−h(t)(σ−aτ x−a0ξ)2+2β(t)mσ−β(t)σ 2

]

+ βm2
1 − log trσ e2βm1σ−βσ 2

+
1

2
log(π/h). (26)
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Figure 7. Flows of hyper-parameters (β, h) by using the EM algorithm. The noise level and
source temperature are selected as aτ = a0 = 1 and Ts = 0.75, respectively. Therefore, the true
values of β and h are β = 1/Ts = 1.33 and h = hopt = 1/2. We find that all flows converge to
the correct solution (1.33, 0.5).

For this data-averaged Q function, the EM algorithm updates the hyper-parameters β and h
according to the following rules:

β(t+1) = arg max
β

q(β, h|β(t), h(t)) (27a)

h(t+1) = arg max
h

q(β, h|β(t), h(t)). (27b)

After calculating the above non-linear maps, we obtain the maximum likelihood estimate as a
fixed point of the dynamics. In the next two subsections, we investigate the performance of
these iterations for the cases Q = 3 and 4.

5.1. Analysis of the Q = 3 case

To demonstrate the EM algorithm to infer the hyper-parameters β and h, we first consider the
case Q = 3. It is important for us to keep in mind that the magnetizations m and m1 appearing
in the equations (27a) and (27b) are used as equilibrium values, namely, for each time step,
m and m1 should satisfy the saddle point equations (12) and (18) with (β, h) = (β(t), h(t)),
respectively. In figure 7, we plot several hyper-parameter flows calculated by the EM algorithm
(27a) and (27b). We found that the EM algorithm achieves convergence to the correct solution
even if we start the algorithm from any point which is far from the solution. However, the
speed of the convergence depends on the initial condition of the non-linear EM iterations (27a)
and (27b). We plot the time dependence of the hyper-parameters β and h in figure 8. This
figure shows that when we choose large β as a starting point of maps (27a) and (27b), in other
words, if we start the EM updates in the ferromagnetic state at low temperature, the speed
of convergence becomes very slow. In figure 9, we also plot the time-dependent Q function
Q(t : β, h) ≡ q(β, h|β(t), h(t)) as a function of β and h provided that the tth values of the
hyper-parameters β(t) and h(t) are given. We plot for the cases t = 0, 1, 100 and t = 1000
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Figure 8. Time evolutions of hyper-parameters h (left) and β (right). When we choose large β as
an initial state, the speed of convergence becomes very slow.
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Figure 9. The time evolution of the surface of the Q function. From the upper left to the lower
right, t = 0, 100, 500 and t = 1000 cases are plotted. We set β = 2.0, h = 1.0 as the initial state
of the evolution of the hyper-parameters.

time steps. From this figure, we see that at an early stage of the EM update, the slope with
respect to h for a given β is much more steep than that of β. This property means that the EM
algorithm shows fast convergence to the solution of h = hopt = 1/2 at the beginning of the
EM update. After that, a little movement in the β-direction starts to converge to the solution.
The speed of the convergence is very slow. This is because the slope with respect to β in the
surface of the Q function is relatively slack. The time evolutions of data-averaged marginal
likelihood function during the EM algorithm are shown in figure 10. This figure shows that
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Figure 10. The time evolutions of the data-averaged marginal likelihood function during the EM
algorithm. We set the initial values of the hyper-parameters (β(0), h(0)) = (0.5, 1.5).
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Figure 11. Flows of hyper-parameters β(t) and h(t) for the case Q = 4. We set the true values of
the hyper-parameters β = 1/Ts = 2.0 and h = hopt = 1/2. We find that all flows converge to the
true point.

the data-averaged marginal likelihood function increases monotonically during EM updates
(27a) and (27b) and converges to its global maximum.

5.2. Analysis of the Q = 4 case

In order to investigate the effects of the number of the grey scale levels Q on the dynamics
of the hyper-parameters, we briefly show the results for the case Q = 4. We simply show
the flows and the time evolutions of the hyper-parameters in figures 11 and 12. We find that
the flows converge to the true value and the final solution is independent of the choice of the
initial condition, however, the speed of the convergence becomes very slow. For this Q = 4
case, the convergence of the h-direction is much faster than that of the β-direction as we saw
in the case Q = 3.



11010 J-i Inoue and K Tanaka

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

h

t /4

0.9

1.1

1.3

1.5

1.7

1.9

0 100 200 300 400 500

β

t /4

Figure 12. Time developments of the hyper-parameters h (left) and β (right) for the case Q = 4.
We should keep in mind that the time axis is scaled by 1/4, namely, the actual range of time t is
[0 : 2000].

6. Summary

In this paper, we investigated the dynamics of the hyper-parameter estimation via the EM
algorithm by analysis of the infinite range Q-Ising model. We calculated the data-average
marginal likelihood function and found that it takes a maximum at the true values of the
hyper-parameters. The EM algorithm was demonstrated for our model system to obtain the
maximum likelihood estimate of the hyper-parameters. We evaluated the time evolutions of
the hyper-parameters and the surface of the Q function. We found from the time evolutions
of the surface of the Q function that at the early stage of the EM update, the slope of the Q
function with respect to h for a given β is much steeper than that of β. This property means
that the EM algorithm shows fast convergence along the h-direction at the initial stage of the
EM updates, however, the movement of the β-direction is extremely slow. This is because the
slope with respect to β in the surface of the Q function is relatively slack. From the viewpoint
of computational cost, it was revealed that the increase of the grey scale levels Q is serious to
obtain the solution. We hope our analysis gives an insight to improve the slow convergence
which is the nature of the EM algorithm for the hyper-parameters estimation in the Bayesian
grey scale image restoration.
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